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THEORY OF TRANSPORT OF ROCK PARTICLES DURING DRILLING 

WITH CONSIDERATION OF WATER ABSORPTION AND INFLOW 

I. A, Amiraslanov UDC 532.584 

An approximate one-dimensional theory of the process of transport of heavy solid 
rock particles by the flow of dril~ing mud in a vertical well is proposed. 

The process of transport of solid rock particles by drilling mud plays an important role 
in the technological cycle of drilling. Imperfect bottom-hole flushing leads to collapse and 
shutdown of drilling. It is necessary to know the distribution of the concentration of solid 
particles in the annular space of the well to select the most efficient trouble-free drilling 
practices. The solid particles of fractured rock carried to the surface by the drilling mud 
have an order of I0-3-I0 -7 m. Drilling mud is an aqueous suspension of clay with various 
additives; its viscosity is of the order of 20-200 cP. The free-fall velocity of the heavy 
rock particles in the mud does not exceed | m/sec in order of magnitude, and the characteris ~ 
tic drilling-mud velocity has an order of I0 m/sec. Therefore we will consider that the 
velocity of the solid particles is equal to the mud velocity. In addition, we will assume 
the well is vertical and the process is one-dimensionaL 

On the basis of the adopted assumptions we obtain the following equations of mass trans- 
port: 

(0c + v = _ cQ- (x, t) +g(x, t), (i) 
s T [  ax ! 

vs = Qo (t) + Q+ (x, t) Q- (x. r dx. (2) 
o o 

Usually Q+ and Q- are observed on the exposed, uncased section of the well and are asso- 
ciated with various complications occurring during drilling (for example, as a consequence of 
fractures, creep, or low strength of the rocks and lost circulation, water inflow, cave-in, 
etc., caused by these factors). Henceforth Q-, Q+, Qo, and g are considered known. 

Let us examine some solutions of Eq. (I). 
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Cased Section of Well. I* 
of ideal trouble-free operation with an annular cross section of constant area: 

Q + = q - = 0 ,  g = 0 ,  v = c o n ~ .  

The general so lu t ion  of  Eq. (1) in th is  case has the form 

c = F (~), ~ = x - -  S v ( t )m,  v s  Oo (t), 

When X~Xo, t > to let there occur the following conditions 

(3) 

(4) 

where F(O is an arbitrary function. 

When x = Xo let c = Co(t) (Cauchy problem). 
ditlon for determining F(O: 

Hence from (4) we obtain the following con- 

(5)  
p (~) --  c, (t), & = ~0 - .  S v (t) m 

We denote f ffi ~ v(t)dt and the function t = f*(f) inverse to it. From (5) we find 

t----t* (Xo--~), t ---- x0--L.  (6) 

S u b s t i t u t i n g  i n t o  (5) ,  we o b t a i n  

F (~) = co 1I* (xo -- ~)1, (7) 
and the so lu t ion  of  the Cauchy boundary-value problem is  w r i t t e n  so: 

c = coil* (xo--~)l, ~ = x - -  S v (Oa t .  (8) 
For example, when v = const at times t (ix > t > to) we have 

c~ = c~ ( t x - -  x------'L~ for i x > t - -  x - -  x-----~-~ > t o . v  (9) 

This  i s  a s t e a d y  o p e r a t i n g  regime of  the  pump du r ing  t ime t l > t > to (and " s t eady"  compl i -  
c a t i o n s  in  s e c t i o n  0 < x < xo a t  t imes  t l  > t > t o ) .  

When xo ffi 0 the  s o l u t i o n  (9) co r responds  to the  same pump regime in  i d e a l  t r o u b l e - f r e e  
we l l  o p e r a t i o n  (under  v a r y i n g ,  uns teady  bo t tom-ho le  o p e r a t i n g  c o n d i t i o n s ,  fo r  example,  as a 
consequence of  the  g e o l o g i c a l  c o n d i t i o n s ) .  

If, furthermore, the condition c - Co = const for t~ > t > to is fulfilled, then it 
follows from (9) that 

f o r t l > t  x - - x o  > t o  c = c o = o o n s t .  (,tO) 
v 

This simple solution corresponds also to steady entry of suspended particles into cross sec- 
tion x ffi xo. When xo ffi 0 it corresponds to an ideal trouble-free steady operating regime of 
the well and pump under lowland geological conditions. 

We will now study the case when v, g, and Q- are arbitrary functions of t which are in- 
dependent of x. We will seek the general solution of Eq. (I) in the form 

c = e (~, t), ~ = x - - ~ v ( 0 ~ ,  ( !1)  
where F is an arbitrary function. We find 

@F 
S =-- FQ--~ g. (12) 

at 

Integrating, we obtain 

c = e x p  [ - - +  ~ Q - ( t ) d t ] { +  S g ( t ) e x p [ +  ~ Q-(x)dx] dt -I- C(~)}. 

Here C(~) i s  an a r b i t r a r y  f u n c t i o n  de te rmined  from the  boundary c o n d i t i o n :  
Co(t). 

Analogously to the preceding, we find 

c(I~) = o if* ( -  ~)]. 

Here f = ~" v(t)dt; t = f * ( f )  ( f * ( f ( t ) )  = t); 

ox.[+ S o-,o'"~ S S 

(13) 

when x ffi O, c ffi 

(14) 

268 



2. 
section of the well and water inflow and similar phenomena be absent: 

Lost Circulation. Let lost circulation occur only at point x = x, of the uncased 

e = o, Q- (~, t) = O"(t) 8 ( x -  x,) ,  

VvO for 0 < x < x , ,  
Q+ (x, t) O, v = 1 

o-- - f - -Q-( t )  for x , < x < x o .  

Here 6(x- x,) is the Dirac delta function; Q-(t) is the mud flow rate from the well in unit 
time. The flow of the drilling mud to the bottom of the hole is considered steady, i.e., 

(15) 

1 Oc c Q- ( t )6 (x - - x , )  (16) 
Ox S 

Vo = const. 

Equation (I) will take the form 

0c 

0t 

or in another, detailed notation: 

0c 

ot 
Oc = 0  for 0 < x < x , ,  

+ Vo Ox 
(17) 

at + vo - -  - y  q -  ) ax 

c (x, + 0, t) - -  c (x, --  0, t) = 0: 

The l a s t  r e l a t i o n s h i p  expresses  the p h y s i c a l  c o n d i t i o n  o f  c o n t i n u i t y  o f  the c o n c e n t r a t i o n  
o f  suspended p a r t i c l e s  a t  s i n g u l a r  p o i n t  x = Xo. 

The genera l  s o l u t i o n  of  Eq. (16) or  of  gqs.  ( 1 7 ) e q u i v a l e n t  to i t ,  according  to (4) ,  has 
the following form: 

I( :0) C co t - -  x for 0 < X < x , ,  (18) 

(F(~) for x , < x < x o ,  

1 
= x - -  ~,ot + t" Q -  (t) ~.  

d 

(19) 

selected so that the boundary condition 
c = co(t). Function F(~) is found from 
= x, (the last equation of (17)): 

Here the argument of the arbitrary function Co(a) is 
at the bottom of the hole is satisfied: when x = 0, 
the condition of joining of the solutions at point x 

(20) 

c0(  x.) Vo s Q-C0 

Hence, having denoted f = (I/S) ~ Q'(t)dt, t = f*(f) so that f*(f(t)) = t, we obtain 

F(~) = co ( ~ + _ _ . L  ) - ~-~ vos ~ Q - ( 0 ~ t  , 

consequen t ly ,  accord ing  to (18),  we h a v e  

( .... ) for 0 < x < x 0  c Co t - -  x 

as in  the absence o f  l o s t  c i r c u l a t i o n .  However, the t o t a l  flow of  the mass o f  suspended 
p a r t i c l e s ,  obv ious ly ,  w i l l  decrease  by the q u a n t i t y  c / Q ' ( t )  when x > x , .  

This r e s u l t , = o b t a i n e d  from p h y s i c a l  c o n s i d e r a t i o n s ,  i s  e a s i l y  g e n e r a l i z e d  to the case 
of  a r b i t r a r y  l o s t  r e t u r n s ,  i . e . ,  a r b i t r a r y  f u n c t i o n  Q-(x, t ) ,  in  the fo l lowing  way: the 
one-dimensional  d i s t r i b u t i o n  of  t h e  c o n c e n t r a t i o n  c i n  time does not  depend on a r b i t r a r y  
n o n s e l e c t i v e  l o s t  r e t u r n s .  The re fo re ,  w i thou t  loss  o f  g e n e r a l i t y  the one-dimensional  equa- 
t i o n  of  mass t r ans fo rm (1) can be w r i t t e n  so:  

ac Oc_ 1 
a t  + v ax - s g(x,  o. (21) 
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In the expression of v as a function of x and t in this case also, naturally, lost circula- 
tion is not taken into account. 

3. Transport of Particles with Consideration of Water Inflow. 
only at point x = xa of the uncased section of the well: 

e~, t ) = e ( O s ~ - x , ) ,  
(22) [~(0 ~ r  O < x < x , ,  

Let water inflow occur 

Here g(t) is the flow of extraneous fluid into the well in unit time; Vo(t) is a given func- 
tion corresponding to arbitrary, generally speaking, unsteady flow of the fluid to the bottom 
of the hole. 

Thus under conditions (22) the equation of mass transport (21) has the form 

a-~-c +v(x, t) Oc = 0  ( 0 < x < x 0 )  (23) 
ot ox 

w i t h  the  c o n d i t i o n  o f  c o n s e r v a t i o n  ( c o n d i t i o n  on a s t r o n g  d i s c o n t i n u i t y )  

c(x,--O, t ) = [  1 +  vog(------O---~ ] +0, t) (24) 

a t  s i n g u l a r  p o i n t  x = x ,  ( p o i n t  o f  d i s c o n t i n u i t y  o f  the  s o l u t i o n ) .  

The general solution of (23) has the form: 

when 0 < x < x, 

c = co It ( - -  ~)1, [ = x - -  S vo (t) a ,  (25) 

where  
~" v0 (t) �9 = ~, t = t (~) (t (= (t)) = 0, 

when x, < x < Xo 
1 

c = p (t), = x -  Vo (t) - S ] e (t) (26) 

where 

I 
e (t) dt = ~. t = t (~) (t (~ (t)) = t )  

Here  c o ( t )  i s  t he  c o n c e n t r a t i o n  o f  suspended  p a r t i c l e s  a t  t he  b o t t o m  o f  the  h o l e ,  i . e . ,  c = 
c o ( t )  when x - O; F(~)  i s  a f u n c t i o n  which  s h o u l d  be d e t e r ~ n e d  f rom the  c o n d i t i o n  o f  c o n s e r -  
v a t i o n  a t  t he  p o i n t  o f  d i s c o n t i n u i t y  x = x , .  

where 

We find 

c 0 l t ( - - ~ , ) l = {  I + ~ - ) F ( | , - - ~ ) ,  

| .  = x ,  - S v0 (t) a = ~ ,  ( t )  

(27) 

Having d e n o t e d  

on the  b a s i s  o f  (27) we o b t a i n  

A (t) = Vo (t) S c, {t [ - -  L (01L 
e (t) + Vo (t) S 

= L (t) - -  13 (t), t = t (~) (t (~ (0 )  = t), 

r (~) = A (t �9  

E q u a t i o n s  ( 2 5 ) ,  ( 2 6 ) ,  and (28) g i v e  the  e x a c t  s o l u t i o n  o f  t h e  s t a t e d  p ro b l em .  

Le t  w a t e r  i n f l o w  o c c u r  u n i f o r m l y  on w e l l  s e c t i o n  0 < x < x o :  

(28) 
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g(x, t ) = g ( t )  for O < x < x 0 ,  

v = vo(t) + xS-~g (t) for 0 < x . <  x0. 
(29) 

Here g(t) is the inflow of extraneous fluid into the well per unit length of it. 

In case (29) the mass-transport equation (21) has the form 

Oc _4. [vo(t) _k_ 1 ] Oc 1 
o--i- -~--xe(t) Ox = s e(t) ( 0 < X < X o ) .  

We d i v i d e  b o t h  s i d e s  o f  t h i s  e q u a t i o n  by  g ( t )  and i n t r o d u c e  t h e  new n o t a t i o n s :  

(30) 

Hence from (30) we obtain 

1 S ~ g(t)dt,  vz(x) -- S v0[t(x)l , c = x + c x ( x ,  "~). (31)  
g [t (T)I 

Ocx Ocl = 0.  ( 3 2 )  O'~ + [x + Vx (~)1 0x"  

The characteristic equations related to Eq. (32) will be the following: 

dcl = q a t  .p(xq_vl(,~)),  dr =_ i, dP = - - p ,  (33) 
ds ds ds 

dq = _ p v ;  (~), ax.,. = x + v~ (t), 
ds ds 

whe re  s i s  an  a r b i t r a r y  p a r a m e t e r ~  p = ac~ /ax ,  q = a c l / a x ,  so  t h a t  Eq. (32)  t a k e s  t h e  f o r m  

q -4- P Ix q- vt (T)I = o. (34)  

The i n t e g r a l s  o f  t h e  f i r s t  t h r e e  e q u a t i o n s  o f  (33)  a r e  o b v i o u s :  

ci.= Clo, x = s -'1- %, P = Poe -~. (35)  

Here  c x o ,  xo ,  Po a r e  a r b i t r a r y  c o n s t a n t s .  S u b s t i t u t i n g  i n t e g r a l s  (35)  i n t o  t h e  f o u r t h  and 
f i f t h  e q u a t i o n s  o f  ( 3 3 ) ,  we o b t a i n  w i t h  c o n s i d e r a t i o n  o f  (34)  

dq _ poe-S v~ (s q- %), dx" = 2x q - q (36) 
ds ds p 

The s o l u t i o n  o f  t h e s e  e q u a t i o n s  h a s  t h e  f o r m  

q = qo "}'Po .[e-Sot (sq- %)ds, 

x = xoe =' + e n ~ Q (s) e -~ '  ds. 
(37) 

Here 

Q (s) = &_0 e,_ e' ~ e -~ v~ (s + ~0) as, 
P~ 

qo and x. are arbitrary constants. 

The family of curves on plane xT 

I; I ;  

, = e "  (c  - o-'d  o; 
'~o "go 

(38) 

where 

C = e -~.g~ [2x0 + v; (~o)1, 

represents, according to the solution (35), (37) obtained, a certain family of characteristic 
curves (see Fig. I). The relationships 

c, = c10, = p0 g~ = q0 - -  Po eT~ [ e-~v;  (x)d% (39)  
Ox o% o 

where 
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Fig. I .  

"~o "~ 

Characteristic curves with param- 
eters Cxo, Po, To. 

q0 q- P0 Ix0 q- ~ (x0)] = O, 

a r e  v a l i d  a l o n g  each  o f  t h e s e  c h a r a c t e r i s t i c s .  

C o n s t a n t s  cxo,  qo,  po v a r y  from one c h a r a c t e r i s t i c  to  a n o t h e r .  R e l a t i o n s h i p s  (39) 
p e r m i t  f i n d i n g  t h e  s o l u t i o n  o f  the  b o u n d a r y - v a l u e  p rob lem (Cauchy problem)  

~ r  x = O  c~=C~o(~) .  (40) 

As is seen, cx will be constant along each characteristic, the value of the constant being 
determined by condition (40) at the point of axis ~ formed by the intersection of axis T with 
the corresponding characteristic. 

We will ex~mlne a particular case of this problem: 

g (0  = g = const, ~ (0 = ~ = const (0 < t < t~. (41 ) 

This is a steady regime of delivery of the drilling mud to the bottom and water inflow 
in the well in the time interval from zero to to. In this case, according to (31), the 
family of characteristics (38) will be the following: 

X = Ce 2~. (42) 

The relationships 

where 

C 1 ~ ClO, 
0c~ _p0e~.-~, 0cl = qo, 
dx Ox 

qo + po (Xo .-F v---2-~ S) = x~ + vl (x~ = O" 

are valid along each characteristic on the basis of (39). The general solution of mass 
transport has the form 

1 gtq_F(~),  ~ _  S ln(voq__~_x)  -t, (43) c =  S g 

where F(~) i s  an a r b i t r a r y  f u n c t i o n .  

The general solution of transport equation (21) is constructed analogously in the case 
when v is an arbitrary function of x but does not depend on t. In this case 

S dx t, (44) c = F (~) q- In v (x), ~ "- v (x) 

since 

e(~,  0 = s  ~-~-- �9 
Ox 

In the general case the equation of transport of particles (21) is written in the most 
compact form: 

ac Oc do 
d[,_ D ~ ' '  

at dx ax 

' dx) 
(45) 
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The characteristic equations related to Eq. (45) are the following: 

dx dc Ov 
= v ( x ,  t ) ,  ~ = , 

dt dt Ox 

ap _ ~ + .02v  dq Ov 0 2 v  

clt - - - -  p Ox Ox~ ' dt  = - -  p Ot OxOt 

(46) 

Here 

p = 
ac 0c ~ O r \  

( q + p v =  Ox ) " 
Ox " q = Ot 

The solution of the first equation of (46) determines a one-parameter family of character- 
istic curves on plane xt; this solution is found by standard numerical methods. In the case 
when function v(x, t) can be represented as the product v(x, t) = vz(x)vm(t) (and also in 
certain other cases) it is easy to find a closed analytic solution of the first equation of 
(46) in an implicit form. 

The second equation of (46) is solved in the general case in the form 

c=co+~O~x dr. 
This relationship is fulfilled on each characteristic; it permits finding numerically the 
field of concentration of solid particles in the well at any time on the basis of a given 
concentration at the boundary when x = 0. 

The region of existence of a unique solution is determined by the structure of the 
family of characteristic curves, i.e., by the first equation of (46). 

The solutions obtained can be used in practice for obtaining information about water 
breakthrough into a well and about lost circulation on the basis of the concentration of 
rock particles in the fluid flow observed on the surface. 

NOTATION 

c, volume concentration of solid particles; S, cross-sectional area of annular space; 
v, fluid velocity; Qo, volume flow rate of drilling mud; Q+, volume inflow of groundwaters 
into well; Q-, volume outflow of drilling mud into rock; t, time; x, ax~ of well; g, volume 
inflow of new solid particles into well; ~, Dirac delta function. 

] o 

2. 
3. 
4. 

. 
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